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ANALYSIS OF ELASTIC WAVE DYNAMICS IN WALLS OF A SPHERICAL 

EXPLOSION CHAMBER 

A. I. Marchenko and G. S. Romanov UDC 533 + 539 

The wave motion is investigated numerically, and the magnitude of the elastic 
stresses is estimated in the walls of a spherical explosion chamber. 

The theoretical computational model of gasdynamic and mechanical processes proceeding 
in a spherical explosion chamber was examined in detail in [i]. The proposed model permitted 
computation of the wave motion parameters within the chamber and estimation of the fraction 
of energy transmitted to its walls. A detailed comparison between the numerical results ob- 
tained and certain experimental--computational data [2] showed good agreement. The investi- 
gation executed in [i] permitted the conclusion that the model assures a more rigorous analy- 
sis of the phenomena under consideration as compared with the assumptions often used in the 
literature about the constancy of the pressure on the chamber walls or the possibility of 
approximating it by the simplest analytic dependences [3, 4]. 

The present investigation supplements [i] in the numerical study of the dynamics of 
elastic waves being generated in chamber walls subjected to periodic pulsed impacting loads 
for the case of finitely or infinitely thick walls, which is of interest for the solution of 
a broad class of practical problems [2-5]. 

Within the framework of the model proposed in [i], wave processes in the walls of a 
spherical explosion chamber of radius ~2 mfilled with air of the density Po = 1.293"i O-s 
g/cm 3 at a pressure Po = 1 arm at whose center is an energy-liberating source of 3 cm radius 
and Eo = 7.106"109 J energy are considered in this paper. Aluminum (Pl = 2.7 g/cm ~) was 
selected as chamber wall material. 
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Fig. i. Distribution of the pressure P (kbar), principal stresses 
--ZR and --~0 (kbar), velocity U (km/sec), and relative change in 
density Ap at the chamber walls along the radius R (m) for differ- 
ent times t (msec): a) 0.299; b) 1.567; c) 2.57. Infinite chamber- 
wall thickness version. 
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Fig. 2. Distribution of the pressure P (kbar), principal stresses 
--ZR and--Z e (kbar), velocity U (km/sec), and relative change in 
density Ap at the chamber wall over the coordinate R (m) for dif- 
ferent times t (msec): a) 0.1738; b) 0.2512; c) 0.3021; d) 0.3982; 
3) 0.5012. Finite wall thickness version. 

According to [i], the system of continuum mechanics equations 

R = u ,  O=vl  ~ +2 -~ , 

V = VI F, = V (%~  + 2 s 2 ; 2 ) -  (P  + q )V ,  
OM ' 

where 

�9 U 
82 ~ 

~ ' R = - - ( P  + q )  + s l ;  E 0 = - - - ( P + q ) + s ~ ;  s 1 = 2 ~ 1  e ~ - - - 3 - - V  ; ~ = 2 ~  % 3 ; s~--  OR ; 

, w a s  u s e d  f o r  a n u m e r i c a l  c o m p u t a t i o n  o f  t h e  p r o c e s s e s  b o t h  w i t h i n  t h e  c h a m b e r  a n d  
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Fig. 3. Velocities (km/sec) of the internal U2 and external U3 
chamber wall boundaries as a function of the time t (msec). 

Fig. 4. Dependence of the energy bE (%) transmitted to the chamber 
wall on the time t (msec). Dashed line corresponds to the case of 
unlimited chamber wall thickness, and solid line to a finite thick- 
ness wall. 

on its walls. The dots above the quantities in the equations denote the derivative with re- 
spect to time along the trajectory of the medium particles. 

The Mises condition s~ + s~ + s~ ~ 2/3Y~, s3 = -- (s~ + s2), was used to correct the 
stress deviator components during passage to the plastic flow stage of the medium; the values 
of the yield point and shear modulus for aluminum are respectively [6, 9] Yo = 2.976 kbar 
and p~ = 248 kbar. 

Therefore, the description of the wave processes in chamber walls used in this paper 
takes account of the elastic, elastic--plastic, and hydrodynamic stages of the motion of the 
medium and is therefore of sufficiently general nature. 

The computation of the thermodynamic parameters in the chamber walls was performed by 
means of the Tillotson equations which reflect the properties of the medium well under pulsed 
impact loads [7-9]: 

P=[a+b/(E/c~ 2+ 1)]Ep + A ~ + B ~  2, p ~ 9 1 ,  

[ ( ( 1 -  ! ) ]  ( /  ~ __ )~t P=aEp+ bEp/(E/c~2+l)+A~exp --6 -~--I exp --~ ~--i , 9 < 0 1 ,  

where p = q - -  1; n = O/px. 

The f o l l o w i n g  v a l u e s  o f  t he  c o n s t a n t s  i n  t he  e q u a t i o n s  o f  s t a t e  f o r  aluminum were t a k e n  
f o r  t h e  v e r s i o n s  o f  t he  problem under  i n v e s t i g a t i o n  [9] :  Pl = 2 .7  g/cm3; A = 7.5"10xx dyn/  
cm2; B = 6.5ol0XXdyn/cma; a = 0 .5 ;  b = 1 .63;  a = 5 .0 ;  ~ = 5 .0 ;  c = 5 . 1 0 X t e r g / g .  

As f o l l o w s  from [1 ] ,  t h e  p r o c e s s  o f  e x p l o s i v e  l o a d i n g  of  chamber w a l l s  i s  a p e r i o d i c  
pulse in nature, and is determined by the dynamics of shockwave motion. A definite vibra- 
tion frequency ~4 kHz is built up in the chamber with time; here the amplitude of the changes 
in pressure, density, and temperature on the walls drops sharply after several of the first 
pulses, and later remains practically constant [i]. 

A field of elastic stresses is generated in the walls as a result of the periodic wave 
motion within the chamber. A train of elastic compression--tension waves (Fig. i), of os- 
cillatory structure due to the pulsed weakly-damped nature of the shock processes in the 
chamber [i], is here propagated in the medium. The elastic pulses being generated in the 
chamber walls with the lapse of time lose their energy and are smoothed out so that in prac- 
tice only the first of them (Fig. i) with an excess pressure magnitude of ~20 bar (t = 2.57 
msec) at the front is clearly looked over after several msec. The spatial elastic-wave de- 

1367 



formation observed in the graphs and the sharp drop in their amplitude are explained by the 
intensive energy absorption in the area of elastic tension of the medium, which has mainly 
positive values of the stresses that occur after the first pulse (Fig. i). 

The results presented in Fig. 1 refer to the case of an unlimited dense medium sur- 
rounding the chamber. The process of wave motion development and elastic stress field forma- 
tion in a chamber wall with a 1 m thickness is represented in Fig. 2. In contrast to the 
unlimited, dense medium surrounding the chamber, taking account of the finite wall dimen- 
sions results in complication of the physical pattern of the phenomena being studied. 

The elastic waves that occur in the chamber wall under the effect of shock pulses are 
reflected from the media interfaces, change the motion direction, are mutually amplified or 
attenuated, consequently resulting in a sufficiently complicated pattern of the stress dis- 
tribution in the medium (Fig. 2) due to the many components. As is seen from Fig. 2, for a 
continuously varying elastic wave field the magnitude of the stresses occurring in the cham- 
ber wall does not exceed the strength limit of 1-3 kbar for aluminum [I0]. The relative 
change in density because of the elastic compression--tension of the medium is here not more 
than ~I-2%, which is considerably greater than the relative change in density in the case 
of a wall of unlimited thickness (tenths and hundredths of a percent (Fig. i)) and is due 
to chamber wall tension as a whole. 

Results of numerical computations permitted it to be established that the action of 
shock pulses on a finite-thickness wall results in the origination of natural wall vibra- 
tions with a period of ~2 msec in the version of the problem under consideration (Fig. 3). 
In particular, the shape of the curve for the energy absorption function in the chamber wall 
(Fig. 4) is explained by this effect. In the finite wall thickness case, this function os- 
cillates slowly around the quantity ~0.15%, corresponding to the version of the unlimited 
medium [i] surrounding the chamber. 

In conclusion, we note that an analysis of the numerical results obtained in this paper 
and their comparison with the data in [2] permits making the deduction that elastic waves 
originating in explosion chamber walls under the effect of pulsed impact loads, as was as- 
sumed in [i], have practically no influence on the pattern of the gasdynamic motion within 
the chamber. 

NOTATION 

p, density; E, specific internal energy; AE, fraction of the energy radiation through 
the wall by the chamber; P, pressure; q, pseudoviscosity; V, specific volume; ZR, E%, radial 
and tangential stress; s,, s2, s3, stress deviator components; e,, e2, eg, strain vector com- 
ponents; Po, Po, air pressure and density; Pz, density of the wall material; Ap, relative 
change in density in the chamber walls; Eo, source energy; ~z, shear modulus; Yo, yield 
point; A, B, a, b, c, ~, 8, constants in the Tillotson equation of state; R, radial coordi- 
ate; t, time; M, mass (Lagrange) coordinate; U, velocity; U2, U3, velocities of the inner 
and outer chamber wall boundaries. 
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EFFECT OF MEMORY ON DISSIPATIVE STRUCTURES FOPMING 

IN DISTRIBUTED KINETIC SYSTEMS 

V. M. Kudinov, V. A. Danilenko, 
and A. S. Makarenko 

UDC 532.59:536.7:541.121 

Integrodifferential equations which include memory effects are proposed for de- 
scribing the formation of dissipative structures in distributed kinetic systems. 

Quite thorough studies have been made in recent years concerning dissipative structures 
in distributed kinetic systems describable by parabolic equations of transfer [1-5], these 
equations being derived from the conditions of balance and from phenomenological laws which 
express instantaneous and local relations between thermodynamic fluxes and forces on the as- 
sumption that local equilibrium prevails in every small element of the medium. The local 
state of the medium is, moreover, completely described by an equation which does not contain 
any gradients. In most models the kinetic transfer coefficients are assumed to be constant 
[1-3]. Equations of the parabolic kind with constant transfer coefficients admit solutions 
(not physically realistic) which yield infinitely large fluxes at time zero [6-8]. Despite 
these singularities in the solutions, the latter rather accurately describe experimental 
data obtained in studies of structurization during low-intensity transient processes. Singu- 
larities in the solutions to parabolic equations cause difficulties of theoretical nature, 
however, in description of experimental data obtained about dissipative structures in dis- 
tributed active systems during fast nonequilibrium processes. In such processes the gra- 
dients are large and dispersion effects become significant so that it becomes necessary to 
include nonlocality and memory effects in the relations between thermodynamic fluxes and 
forces. It is then incorrect to describe the formation of structures with parabolic equa- 
tions derived in accordance with conventional nonequilibrium thermodynamics, and equations 
of far-from-equilibrium thermodynamics are required instead. 

Methods of nonlinear thermomechanics of continuous media yield the equations 

~ (o) a~z~ (x, t) + ~. (o) + = 
at ~ at .~ at 

0 

= k.  (o) v~z. (x, t) + i k; (o) v~z. (x, t - o) dO + 
o 

, (1) 

a2Tat ~(x' t) + ~ (o) aT a----if--.(x' t) + J~ ~, (o) aT (X,att -- o) do Cv 
o 

= k (0) v2T (x, t) + i k" (0) v*T (x, t - -  O) dO = 
O 

I 
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